```
00:00:07.230 --> 00:00:09.654
```

Alright, this video is about simplifying

00:00:09.654 --> 00:00:10.866
complex rational expressions,

00:00:10.870 --> 00:00:12.814
so we're going to talk about

00:00:12.814 --> 00:00:14.110
simplifying this guy again,

00:00:14.110 --> 00:00:16.646
and there are a couple ways to simplify.

00:00:16.650 --> 00:00:17.904
These expressions.

00:00:17.904 --> 00:00:21.955
And one of them is you clear out

00:00:21.955 --> 00:00:23.854
top and bottom, clear out the

00:00:23.854 --> 00:00:25.822
denominators and that can be tricky.

00:00:25.830 --> 00:00:27.566

So this this way is a little

00:00:27.566 --> 00:00:28.850 bit more step by step.

00:00:28.850 --> 00:00:31.696
And before we do it, let's let's

00:00:31.696 --> 00:00:33.397
think about this for just a second.

00:00:33.400 --> 00:00:36.520
Let's say that I have one.

00:00:36.520 --> 00:00:38.792
Divided by.

00:00:38.792 --> 00:00:43.170
2/3 So that's that's just gonna be.

00:00:43.170 --> 00:00:45.078
Three halves, right?

00:00:45.080 --> 00:00:48.384
But if I have $1 / 1 / 3$.

00:00:48.384 --> 00:00:50.820
Plus $1 / 3$ so that's like a complex

00:00:50.910 --> 00:00:53.072
rational expression, right?

00:00:53.072 --> 00:00:55.080
That's fractions with fractions.

00:00:55.080 --> 00:00:56.448
And I can't just.

00:00:58.900 --> 00:00:59.998
I can't just flip those guys,

00:01:00.000 --> 00:01:02.808
it's actually kind of hard for me to do.

00:01:02.810 --> 00:01:05.029
I can't just one at a time.

00:01:05.030 --> 00:01:05.744
Flip these guys.

00:01:05.744 --> 00:01:07.968
What I really need to do is put them

00:01:07.968 --> 00:01:09.711
together into $2 / 3$ and then I can

00:01:09.711 --> 00:01:11.586
flip on so the same kind of thing.

00:01:11.590 --> 00:01:15.040
Go on over here what we're going to do is.

00:01:15.040 --> 00:01:17.338
At the beginning.

00:01:17.340 --> 00:01:19.900
We can just pull this top piece off,

00:01:19.900 --> 00:01:22.888
combine that into one rational expression.

00:01:22.890 --> 00:01:24.227
And while we're doing it sort of

00:01:24.227 --> 00:01:25.350
forget about the bottom right,

00:01:25.350 --> 00:01:26.610
so we get something over here.

00:01:26.610 --> 00:01:28.269
Do the same thing to the bottom,

00:01:28.270 --> 00:01:29.968
just focus just on the bottom,

00:01:29.970 --> 00:01:30.875
and then we're going to

00:01:30.875 --> 00:01:32.110 divide the top by the bottom.

00:01:32.110 --> 00:01:34.396
Doing this invert and multiply stuff.

00:01:34.400 --> 00:01:36.520
So I'm going to do the top in this color.

00:01:36.520 --> 00:01:39.754
We're just going to get one over.

00:01:39.760 --> 00:01:44.570
A. It was a / B and the common

00:01:44.570 --> 00:01:46.770
denominator there is a $B$.

00:01:46.770 --> 00:01:48.660
So multiply here by be over

00:01:48.660 --> 00:01:50.460
be ending at $B / A B$.

00:01:52.890 --> 00:01:57.190
And here by a/A so a ${ }^{\wedge} 2$.

00:01:57.190 --> 00:02:03.370
Over a B. So there we're getting be.

00:02:03.370 --> 00:02:09.198
Plus a^2 / A B and that's the top.

00:02:09.200 --> 00:02:12.050
OK, and then the bottom.

00:02:12.050 --> 00:02:13.860
Is going to be again

00:02:13.860 --> 00:02:15.050 common denominators, Abby.

00:02:18.060 --> 00:02:19.726
So multiply this guy. Be over be.

00:02:22.910 --> 00:02:26.720
And I'm going to get here. Be over Abby.

00:02:29.430 --> 00:02:31.140
And then multiply this guy by a / A.

00:02:34.080 --> 00:02:34.948
Add across the top.

00:02:39.660 --> 00:02:41.920
So this rational expression,

00:02:41.920 --> 00:02:44.180
this complex rational expression

00:02:44.180 --> 00:02:46.238
is really the top over there.

00:02:52.050 --> 00:02:54.588
Divided by the bottom over there.

00:03:01.030 --> 00:03:03.082
And then all we do is just invert and

00:03:03.082 --> 00:03:04.110
multiply. So we're going to have.

00:03:14.180 --> 00:03:16.484
Right these guys cancel and then we get.

00:03:21.910 --> 00:03:24.370
And we're done, so that's.

00:03:24.370 --> 00:03:25.423
Simplifying complex rational

00:03:25.423 --> 00:03:27.529
expressions by sort of dealing with

00:03:27.529 --> 00:03:29.622
the top and the bottom one at a time

00:03:29.622 --> 00:03:31.176
and then doing invert and multiply

00:03:31.176 --> 00:03:33.540
and maybe a bit longer way to go.

00:03:33.540 --> 00:03:35.415
But on the other hand.

00:03:35.420 --> 00:03:38.594
It really reduces it just to you know.

00:03:38.594 --> 00:03:40.196
People are usually successful with this

00:03:40.196 --> 00:03:41.977
kind of division and then you really

00:03:41.977 --> 00:03:44.252
just have to like do a couple additions,

00:03:44.252 --> 00:03:45.236
top and bottom.

00:03:45.240 --> 00:03:47.328
You can do them one at a time.

00:03:47.330 --> 00:03:48.668
Turn this into a division problem

00:03:48.668 --> 00:03:49.960
that's just invert and multiply,

00:03:49.960 --> 00:03:50.647
and you're done.

00:03:50.647 --> 00:03:52.490
But you do have to be careful, right?

00:03:52.490 --> 00:03:54.970
That you don't fall into this kind of a trap,

00:03:54.970 --> 00:03:55.558
so that's it.

