00:00:08.900 --> 00:00:11.810
Alright, this video is on simplifying

00:00:11.810 --> 00:00:13.750
radical expressions that have.

00:00:13.750 --> 00:00:15.420
Quotients in them, so things

00:00:15.420 --> 00:00:16.970
like this, so we might have,

00:00:16.970 --> 00:00:18.070
for example the cube root.

00:00:21.160 --> 00:00:26.388
Of $54 x^{\wedge} \wedge^{\wedge} 2 \mathrm{y}$.

00:00:30.020 --> 00:00:31.410
Over X to the 7th.

00:00:34.970 --> 00:00:39.730
Y^{\wedge} 2 we want we want to simplify this guy so.

00:00:39.730 --> 00:00:41.740
What we should do first of all, is.

00:00:44.950 --> 00:00:46.840
I mean, ideally simplify the

00:00:46.840 --> 00:00:48.730
inside before we really start

00:00:48.802 --> 00:00:50.825
messing with this cube root, right?

00:00:50.825 --> 00:00:52.190
You can kind of forget that it's

00:00:52.190 --> 00:00:53.561
under a cube root at all and

00:00:53.561 --> 00:00:54.830
just try to simplify the inside.

00:00:54.830 --> 00:00:55.994
So the first thing I would

00:00:55.994 --> 00:00:56.770 do is exactly that.

00:00:56.770 --> 00:00:57.390
I would say, well,

00:00:57.390 --> 00:00:58.165
this is the cube root.

00:01:02.350 --> 00:01:04.726

Of 54 nothing to do there,

00:01:04.730 --> 00:01:07.410
but then $X^{\wedge} 2 / X$ to the 7 th.

00:01:07.410 --> 00:01:12.352
This is like $X * X / X * X * X$ seven times.

00:01:12.352 --> 00:01:14.830
So two of these axes will cancel.

00:01:14.830 --> 00:01:17.982
Two of these axes and I'm just going

00:01:17.982 --> 00:01:19.880
to get X to the fifth down here.

00:01:22.090 --> 00:01:24.332
And likewise this $\mathrm{y} / \mathrm{y}^{\wedge} 2$.

00:01:24.332 --> 00:01:25.487
Well, this is just Y .

00:01:25.490 --> 00:01:27.310
And then here's $\mathrm{y}^{*} \mathrm{Y}$.

00:01:27.310 --> 00:01:30.040
So this is like y / y.

00:01:30.040 --> 00:01:31.561
Times 1 / Y if you want like one

00:01:31.561 --> 00:01:33.275
of these will cancel one of these,

00:01:33.280 --> 00:01:37.360
so we'll get just a Y down here.

00:01:37.360 --> 00:01:38.432
That's first of all,

00:01:38.432 --> 00:01:40.276
that's already a lot easier to look

00:01:40.276 --> 00:01:43.274
at and then we need to think about.

00:01:43.280 --> 00:01:44.908
What is 54 like?

00:01:44.908 --> 00:01:47.350
What's the prime factorization of 54 ?

00:01:47.350 --> 00:01:48.920
So you could pause the

00:01:48.920 --> 00:01:50.490
video and work that out.

00:01:50.490 --> 00:01:51.468
And then let's write it down.

00:01:51.470 --> 00:01:53.310
So it's going to be.

00:01:53.310 --> 00:01:54.398
The cube root here.

00:01:56.640 --> 00:01:59.840
And 54 is 2 * 27 .

00:01:59.840 --> 00:02:06.180
27 is 3 cubed, so this is 2 . Times $3^{\wedge} 3$.

00:02:06.180 --> 00:02:11.660
Divided by X to the 5 th. Over why?

00:02:11.660 --> 00:02:13.655
Now, OK, so we want cube root,

00:02:13.660 --> 00:02:16.404
So what what's going to happen is?

00:02:16.410 --> 00:02:17.301
This cube root.

It's looking for things to

00:02:18.786 --> 00:02:20.550 come out in groups of three.

00:02:20.550 --> 00:02:23.613
So for example, the cube root of three cubed.

00:02:23.613 --> 00:02:24.846
That's just three.

00:02:24.850 --> 00:02:27.865
The cube root of $X \wedge 3$ that's just X,

00:02:27.870 --> 00:02:30.145
so groups of three on the inside,

00:02:30.150 --> 00:02:34.390
they come out as. Like a singles so.

00:02:34.390 --> 00:02:35.880
What we'll get here is.

00:02:39.150 --> 00:02:41.124
We'll have this three will come out.

00:02:43.260 --> 00:02:44.807
On the bottom we get an X.

00:02:46.990 --> 00:02:47.560
And then.

00:02:49.810 --> 00:02:51.987
Let's see. So we used up those

00:02:51.987 --> 00:02:53.988
threes cube root of three cubed.

00:02:53.990 --> 00:02:56.680
That's our three cube root of X to the fifth.

00:02:56.680 --> 00:02:58.633
Again, it's like we're dividing that five

00:02:58.633 --> 00:03:00.767
by three and we're getting one right.

00:03:00.770 --> 00:03:03.087
This is like X to the one.

00:03:03.090 --> 00:03:04.506

But the remainder there is 2 ,

00:03:04.510 --> 00:03:05.710
so in here there is an

00:03:05.710 --> 00:03:06.920
X squared on the bottom.

00:03:09.460 --> 00:03:12.226
Cube root of why that's just.

00:03:12.230 --> 00:03:15.550
That's just going to be cute of Y and then.

00:03:15.550 --> 00:03:17.890
And two. So that's it.

00:03:17.890 --> 00:03:19.190
And what's really going on

00:03:19.190 --> 00:03:20.674
here is of course, right.

00:03:20.674 --> 00:03:22.858
Cube roots and square roots and

00:03:22.858 --> 00:03:25.208
4th roots and fruits and so on.

00:03:25.210 --> 00:03:27.975
They split really well across

00:03:27.975 --> 00:03:30.187
multiplication and across division.

So here like the cube root of this

00:03:32.222 --> 00:03:34.038
this big fraction for example,

00:03:34.040 --> 00:03:35.824
it's just the cube root of the top

00:03:35.830 --> 00:03:37.334
divided by the cube root of the bottom

00:03:37.334 --> 00:03:38.866
and then the cube root of the bottom.

00:03:38.870 --> 00:03:40.678
Well, that's the cube root of X to

00:03:40.678 --> 00:03:42.630
the seven times the cube root of $X^{\wedge} 2$.

00:03:42.630 --> 00:03:44.844
So we can sort of trade out like well.

00:03:44.850 --> 00:03:46.490
Where is this cube root?

00:03:46.490 --> 00:03:48.212
And so for example here this cube

00:03:48.212 --> 00:03:49.893
root is just going to act on

00:03:49.893 --> 00:03:51.590
the three and give us the three.

00:03:51.590 --> 00:03:53.526
And it's going to act on the two,

00:03:53.530 --> 00:03:55.510 and so we get over here cube or two.

00:03:55.510 --> 00:03:57.913
So as long as the things inside are all

00:03:57.913 --> 00:04:00.200
connected with multiplications and divisions.

00:04:00.200 --> 00:04:03.245
Cube Root works really well and same

00:04:03.245 --> 00:04:06.647
with square root and fruit and so on.

00:04:06.647 --> 00:04:09.161
So that's it that's simplifying radical

00:04:09.161 --> 00:04:11.128
expressions. With quotients in them.

